By: Louis T. Dang, Markus Tondl, Man Ho H. Chiu, Jerico Revote, Benedict Paten, Vincent Tano, Alex Tokolyi, Florence Besse, Greg Quaife-Ryan, Helen Cumming, Mark J. Drvodelic, Michael P. Eichenlaub, Jeannette C. Hallab, Julian S. Stolper, Fernando J. Rossello, Marie A. Bogoyevitch, David A. Jans, Hieu T. Nim, Enzo R. Porrello, James E. Hudson and Mirana Ramialison
Abstract
Background
A strong focus of the post-genomic era is mining of the non-coding regulatory genome in order to unravel the function of regulatory elements that coordinate gene expression (Nat 489:57–74, 2012; Nat 507:462–70, 2014; Nat 507:455–61, 2014; Nat 518:317–30, 2015). Whole-genome approaches based on next-generation sequencing (NGS) have provided insight into the genomic location of regulatory elements throughout different cell types, organs and organisms. These technologies are now widespread and commonly used in laboratories from various fields of research. This highlights the need for fast and user-friendly software tools dedicated to extracting cis-regulatory information contained in these regulatory regions; for instance transcription factor binding site (TFBS) composition. Ideally, such tools should not require prior programming knowledge to ensure they are accessible for all users.
Results
We present TrawlerWeb, a web-based version of the Trawler_standalone tool (Nat Methods 4:563–5, 2007; Nat Protoc 5:323–34, 2010), to allow for the identification of enriched motifs in DNA sequences obtained from next-generation sequencing experiments in order to predict their TFBS composition. TrawlerWeb is designed for online queries with standard options common to web-based motif discovery tools. In addition, TrawlerWeb provides three unique new features: 1) TrawlerWeb allows the input of BED files directly generated from NGS experiments, 2) it automatically generates an input-matched biologically relevant background, and 3) it displays resulting conservation scores for each instance of the motif found in the input sequences, which assists the researcher in prioritising the motifs to validate experimentally. Finally, to date, this web-based version of Trawler_standalone remains the fastest online de novo motif discovery tool compared to other popular web-based software, while generating predictions with high accuracy.
[Read more.]
Citation: Dang LT, Tondl M, Chiu MH, Revote J, Paten B, Tano V, Tokolyi A, Besse F, Quaife-Ryan G, Cumming H, Drvodelic MJ. TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets. BMC genomics. 2018 Dec;19(1):238.
Recent Comments